If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+30x-10=0
a = 10; b = 30; c = -10;
Δ = b2-4ac
Δ = 302-4·10·(-10)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{13}}{2*10}=\frac{-30-10\sqrt{13}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{13}}{2*10}=\frac{-30+10\sqrt{13}}{20} $
| 7-3x-9=x+ | | X2/2+4x=1/2(x2+8x+16)-8 | | x3+6x2+12x+10=0 | | n2+5n=0 | | 9.5n=-142.5 | | w/3=-1/54 | | 17.32+w=35.32 | | 13x+5.5=45 | | 1/4w=-41/2 | | (13x+5.5)+(13x+5.5=180 | | Y-2/3=2/3+y | | 6.25w=-112.5 | | 1/4n=-21/2 | | 9/5*5+32=f | | 3y-2=19y+46 | | 9/5(5)+32=f | | (((1-3x)/4)=(((x+6)/3)+(1)/2)) | | 2(7x-9)=46-2x | | 2(7x-9)=46-2 | | x+2x+4×=301 | | (5x-3)=90 | | 5=27+8y | | 5^6x-2=625 | | 8.5n=-85 | | (5x-3)4=360 | | 2x+42=84-4x | | 8100=x^2 | | X/y=7/4=11.X+y=88 | | 2(20-2x)=5x-5 | | -8+3+6b=3b+8 | | 8/(n+4)=4/n | | 32-23=2n=32 |